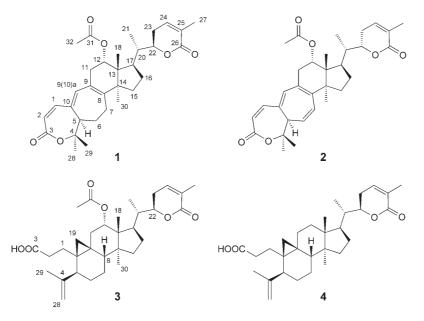
Two New Triterpene Lactones from the Stems of Kadsura polysperma

by Zhengwei Jia, Yan Lu, Zhixin Liao, and Daofeng Chen*

Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 200032, P. R. China (phone: +86-21-54237453; fax: +86-21-64170921; e-mail: dfchen@shmu.edu.cn)


Two new triterpene lactones, polysperlactones A (2) and B (3), were isolated from the stems of *Kadsura polysperma*, together with the known compounds heteroclitalactone D (1) and schisanlactone E (4). Their structures were elucidated by spectroscopic methods, including 2D-NMR and HR-MS techniques. The configuration of 1 was confirmed by X-ray analysis. Compounds 2 and 3 are members of a rare class of 3,4-secolanostane metabolites with ring-expanded or cyclized structures, respectively.

Introduction. – The stems or roots of *Kadsura* plants (Schisandraceae) are commonly used in China as folk medicines. For example, the stems of *K. interior* and *K. heteroclita* are used in traditional Chinese medicine (TCM) to produce '*fufang-jixueteng-gao*' for the treatment of blood deficiency, numb hands and feet, painful aching of the joints, and irregular menstruation [1]. In our previous studies, some biologically active lignans and triterpenoids with novel structures were isolated from *Kadsura* medicinal plants [2–6], including three novel triterpene lactones from *K. lancilimba*, of which lancilactone C was identified as an anti-HIV principle [2]. An alcoholic extract of the stems of *K. polysperma*, a species indigenous to South China, was found to exhibit an inhibitory effect on the lipid peroxidation induced by Fe^{2+/} vitamine C [7].

So far, no detailed study on the constituents of *Kadsura polysperma* has been reported. A phytochemical investigation on the stems of this species was, thus, carried out, which led to the isolation of the known compound heteroclitalactone D (1), the novel triterpenoidal lactones polysperlactone A (2) and polysperlactone B (3), as well as the known compound schisanlactone E (4). This paper reports the isolation and structure elucidation of the new compounds.

Results and Discussion. – Repeated column chromatography of the Et₂O-soluble EtOH extract of the stems of *K. polysperma* yielded compounds **1**–**4**. Compound **1**, obtained as colorless needles, had the molecular formula $C_{32}H_{42}O_6$, as determined by HR-ESI-MS (m/z 545.2874 ([M + Na]⁺)). The ¹H- and ¹³C-NMR data of **1** (*Tables 1* and 2, resp.) indicated a highly oxidized triterpene lactone, two extra C-atoms probably being assignable to an AcO group. The EI-MS fragment at m/z 111 suggested the presence of a six-membered α,β -unsaturated lactone moiety [2]. The ¹H-NMR spectrum (*Table 1*) showed special signals at $\delta(H)$ 6.68, 5.83 (2*d*, J = 12.1 Hz each) due to the olefinic H-atoms at C(1) and C(2), which suggested the presence of a seven-

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

membered lactone ring [8]. In the HMBC spectrum, the signal at $\delta(H)$ 6.17 (s) correlated with the C-atoms at $\delta(C)$ 151.0 (C(8)), 143.4 (C(1)), 140.4 (C(10)), 49.2 (C(5)), and 35.1 (C(11)), revealing that this H-atom corresponded to H-C(9(10)a). Thus, **1** had no cyclopropane ring in the structure.

The EI-MS peak at m/z 464 ($[M-58]^+$) suggested the presence of an AcO group in **1**, which was confirmed by the ¹H-NMR signal at $\delta(H)$ 2.08 (*s*, Me), along with the corresponding ¹³C-NMR signals at $\delta(C)$ 169.9 and 21.4. By comparison of the ¹H- and ¹³C-NMR spectra, the circular-dichroism (CD) and optical-rotation (ORD) data with those reported in the literature [9], as well as by single-crystal X-ray-diffraction analysis (*Fig. 1*), compound **1** was identified as heteroclitalactone D, which corresponds to '(12*S*,22*R*)-12-acetoxy-9(10)a-homo-19-nor-3,4-secolanosta-1,8,9(10)a,24-tetraene-3,4-lactone-26,22-lactone'1), and has been previously isolated from *K. heteroclita* [9]. The typical feature of its skeleton are two unsaturated seven-membered lactone rings, linked through three conjugated C=C bonds. Only a few triterpene derivatives with this type of carbon skeleton have been reported so far [2][9][10].

Polysperlactone A (2), obtained as colorless needles, was assigned the molecular formula $C_{32}H_{40}O_6$ on the basis of HR-ESI-MS (m/z 521.2899 ($[M+H]^+$)). The ¹H-NMR spectrum of **2** (*Table 1*) showed signals for one Me *doublet* at $\delta(H)$ 0.94 and six Me *singlets* at $\delta(H)$ 0.87, 1.07, 1.51, 1.61, 1.93, and 2.06, respectively. The ¹³C-NMR (DEPT) data (*Table 2*) indicated 16 low-field signals, corresponding to three C=O groups at $\delta(C)$ 169.9, 166.6, and 166.3, ten olefinic C-atoms at $\delta(C)$ 149.5, 141.3, 139.0, 134.7, 131.0, 128.5, 127.5, 124.6, 123.5, and 119.2, and three oxygenated C-atoms at $\delta(C)$ 80.0, 78.7, and 73.8, respectively, together with seven Me, four CH₂, and three CH

¹⁾ For systematic names, see *Exper. Part.*

numbering.							
Atom	1	2	3				
H-C(1)	6.68 (d, J = 12.1)	6.58 (d, J = 12.1)					
$CH_{2}(1)$			1.32 - 1.38 (m),				
			2.07 - 2.15(m)				
H-C(2)	5.83 $(d, J = 12.1)$	5.82 (d, J = 12.5)					
$CH_2(2)$			2.24-2.31(m),				
			2.46 - 2.54(m)				
H-C(5)	2.44 $(t, J = 11.2)$	1.63 $(d, J = 7.0)$	2.40 - 2.46(m)				
$CH_2(6)$	1.50 - 1.57 (m),		1.04 - 1.15(m),				
2.	1.87 - 1.97 (m)		1.24 - 1.33 (m)				
H-C(6)		5.83 $(t, J = 8.2)$					
$CH_2(7)$	2.24 - 2.32(m),		0.98 - 1.06 (m),				
2()	2.38 - 2.43(m)		1.55 - 1.62 (m)				
H-C(7)		6.19 (d, J = 9.8)					
H-C(8)			1.38 - 1.45 (m)				
H - C(9(10)a)	6.17(s)	6.12(s)					
$CH_{2}(11)$	2.81 (dd, J = 19.6, 7.4),	3.22 (dd, J = 19.6, 7.8),	1.93 - 1.98 (m),				
- 2()	2.14 (d, J = 19.9)	2.56 (d, J = 19.6)	1.98 - 2.04(m)				
H - C(12)	5.00 (d, J = 7.4)	5.00 (d, J = 7.4)	4.84 (d, J = 6.7)				
$CH_2(15)$	1.42 - 1.48 (m),	1.52 - 1.57 (m),	1.34 - 1.43 (m),				
()	1.70 - 1.78 (m)	2.00-2.08(m)	1.36 - 1.44 (m)				
$CH_{2}(16)$	1.90 - 1.98 (m),	1.55 - 1.62 (m),	1.44 - 1.50 (m),				
0112(10)	2.06 - 2.14 (m)	1.97 - 2.04 (m)	1.80 - 1.88 (m)				
H - C(17)	2.12 - 2.20 (m)	2.18 - 2.27 (m)	2.18 - 2.26 (m)				
Me(18)	0.75(s)	0.87(s)	1.04(s)				
$CH_2(19)$	0.70 (0)		0.60, 0.69 (2d, J = 4.7)				
H - C(20)	2.00 - 2.08 (m)	2.03 - 2.09 (m)	1.97 - 2.04 (m)				
Me(21)	0.91 (d, J = 6.66)	0.94 (d, J = 6.7)	0.83 (d, J = 6.7)				
H-C(22)	4.48 (dt, J = 13.3, 3.5)	4.51 (dt, J = 12.9, 3.5)	4.49 (dt, J = 12.9, 3.5)				
$CH_2(23)$	2.06 - 2.14 (m),	2.08-2.17 (m),	2.18-2.14 (m),				
0112(23)	2.33 - 2.40 (m)	2.34 - 2.44 (m)	2.33 - 2.40 (m)				
H - C(24)	6.61 (d, J = 6.3)	6.61 (d, J = 6.3)	6.62 (d, J = 6.3)				
Me(27)	1.92(s)	1.93(s)	1.92(s)				
Me(28)	1.92(s) 1.40(s)	1.55(s) 1.51(s)	1.52 (3)				
$CH_2(28)$	1.40 (3)	1.51 (5)	4.81, 4.76 (2s)				
Me(29)	1.53(s)	1.61(s)	1.68(s)				
Me(30)	1.35(s) 1.25(s)	1.01(s) 1.07(s)	1.03(3) 1.01(s)				
()							
Me(32)	2.08(s)	2.06 (s)	2.03(s)				

Table 1. ^{*I*}*H-NMR Data of* **1**–**3**. At 400 MHz, 27°, in CDCl₃; δ in ppm, *J* in Hz. Arbitrary atom numbering.

groups, as well as two quaternary C-atoms in the high-field region. These data suggested that **2** was also a highly oxidized triterpene lactone closely related to **1**.

The EI-MS fragment at m/z 111 suggested the presence of a six-membered α,β unsaturated lactone ring [2], which was assigned to the side chain of **2**. The signals at $\delta(H)$ 6.61 (d, J = 6.3 Hz) and 1.93 (s, 3 H) in the ¹H-NMR spectrum could be assigned to the olefinic H-atom and the Me group of the six-membered unsaturated lactone, respectively [11]. The cross-peaks between $\delta(H)$ 0.94 (Me(21)) and $\delta(C)$ 80.0 (C(22)), 39.0 (C(20)), and 39.2 (C(17)) in the HMBC spectrum (*Fig.* 2) indicated that this ring was connected to C(20).

Position	1	2	3	Position	1	2	3
C(1)	143.4 (d)	141.3 (d)	28.6(t)	C(17)	39.4 (d)	39.2 (d)	39.9 (d)
C(2)	118.2(d)	119.2(d)	31.0(t)	C(18)	16.5(q)	16.6(q)	16.8(q)
C(3)	167.0 (s)	166.6 (s)	178.4(s)	C(19)			30.2 (t)
C(4)	80.3 (s)	78.7 (s)	148.8(s)	C(20)	38.9(d)	39.0 (d)	39.1 (d)
C(5)	49.2(d)	51.5 (d)	45.9 (d)	C(21)	12.5(q)	12.4(q)	12.0(q)
C(6)	26.2(t)	123.5(d)	25.3 (t)	C(22)	80.0(d)	80.0(d)	80.3 (d)
C(7)	39.4(t)	124.6(d)	28.0(t)	C(23)	23.3(t)	23.3(t)	23.3(t)
C(8)	151.0(s)	149.5 (s)	48.8(d)	C(24)	139.0(d)	139.0(d)	139.2 (d)
C(9)	126.8(s)	131.0 (s)	26.5(s)	C(25)	128.5(s)	128.5(s)	128.4(s)
C(9(10)a)	142.0(d)	134.7 (d)		C(26)	166.3 (s)	166.3 (s)	166.4 (s)
C(10)	140.4(s)	127.5(s)	20.6(s)	C(27)	17.0(q)	17.0(q)	17.0(q)
C(11)	35.1(t)	37.3(t)	36.0(t)	C(28)	29.2(q)	29.1(q)	112.0(t)
C(12)	73.8(d)	73.8(d)	75.4(d)	C(29)	26.2(q)	25.1(q)	25.1(q)
C(13)	51.4(s)	47.7 (s)	48.6(s)	C(30)	27.6(q)	26.5(q)	26.5(q)
C(14)	48.0(s)	51.1 (s)	48.5(s)	C(31)	169.9 (s)	169.9 (s)	169.7 (s)
C(15)	31.9(t)	31.8(t)	36.5(t)	C(32)	21.4(q)	21.3(q)	21.5(q)
C(16)	27.8(t)	26.1(t)	27.0(t)				

Table 2. ¹³C-NMR Data of **1**-**3**. At 100 MHz, 27°, in CDCl₃; δ in ppm. Arbitrary atom numbering.

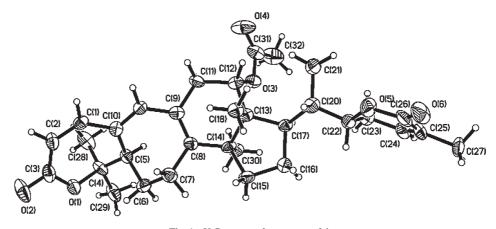


Fig. 1. X-Ray crystal structure of 1

The ¹H-NMR spectrum of **2** further showed signals at $\delta(H)$ 6.58 (d, J = 12.1 Hz) and 5.82 (d, J = 12.5 Hz) due to the olefinic H-atoms at C(1) and C(2), suggesting the presence of a seven-membered lactone ring [8]. The HMBC correlations of $\delta(H)$ 6.58 (H–C(1)) with $\delta(C)$ 51.5 (C(5)), 127.5 (C(10)), and 166.6 (C(3)), of $\delta(H)$ 5.82 (H–C(2)) with $\delta(C)$ 127.5 (C(10)) and 166.6 (C(3)), and of both $\delta(H)$ 1.51 (Me(28)) and 1.61 (Me(29)) with $\delta(C)$ 78.7 (C(4)) confirmed the structure of a seven-membered lactone ring. In the HMBC spectrum of **2** (*Fig.* 2), the signal at $\delta(H)$ 6.12 (s, 1 H) correlated with those at $\delta(C)$ 149.5 (C(8)), 141.3 (C(1)), 127.5 (C(10)), 51.5 (C(5)), and 37.3 (C(11)), revealing that this olefinic H-atom was H–C(9(10)a). Thus, **2** was also devoid of a cyclopropane ring, just as **1**.

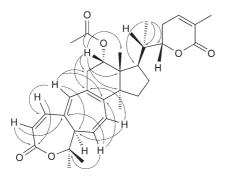


Fig. 2. Key HMBC correlations of 2

The EI-MS peak at m/z 462 ($[M - 58]^+$) suggested the presence of an AcO group in **2**, as confirmed by ¹H- and ¹³C-NMR. The signal at $\delta(H)$ 5.00 (d, J = 7.4 Hz) in the ¹H-NMR spectrum was assigned to H–C(12), the position to which the AcO group was attached, as corroborated by HMBC correlations of $\delta(H)$ 5.00 (d, J = 7.4 Hz) with $\delta(C)$ 169.9 (C(31)), 131.0 (C(9)), 47.7 (C(13)), 51.1 (C(14)), 37.3 (C(11)), and 16.6 (C(18)).

Based on the above data, compound **2** was identified as a triterpenoid, with the same basic skeleton as **1**, but an additional C=C bond. Thus, the most-prominent differences in the ¹H-NMR spectra of **1** and **2** were the appearance of two olefinic resonances at $\delta(H)$ 6.19 (d, J = 9.8 Hz) and 5.83 (t, J = 8.2 Hz) in **2**. Correspondingly, the ¹³C-NMR spectrum of **2** showed two additional olefinic C-atom signals in the low-field region, compared to **1**. In the HMBC spectrum (*Fig.* 2), the correlation of $\delta(H)$ 6.19 (d, J = 9.8 Hz) with $\delta(C)$ 131.0 (C(9)) and 51.5 (C(5)), and that of $\delta(H)$ 5.83 (t, J = 8.2 Hz) with $\delta(C)$ 149.5 (C(8)), 127.5 (C(10)), 78.7 (C(4)), and 51.5 (C(5)) indicated that the additional C=C bond was between C(6) and C(7).

The CD spectrum of **2** showed a negative *Cotton* effect at 248 nm, thus, C(22) was assigned the absolute (*S*)-configuration [11]. Me(18) showed ROESY cross-peaks with H-C(20) and Me(29), indicating that Me(18), H-C(20), and Me(29) are in *syn*- and β -positions. The correlations of Me(30)/H-C(17) and Me(28)/H-C(5) indicated that Me(30) and H-C(5) were α -configured. H-C(12) also showed ROESY cross-peaks with Me(18) and Me(21), confirming the α -configuration for the 12-AcO group. From these data, the structure of the new compound **2** was, thus, elucidated as '(12*S*,22*S*)-12-acetoxy-9(10)a-homo-19-nor-3,4-secolanosta-1,6,8,9(10)a,24-pentaene-3,4-lactone-26,22-lactone'¹).

Polysperlactone B (**3**), obtained as colorless granules, had the molecular formula $C_{32}H_{46}O_6$, as revealed by HR-ESI-MS (m/z 549.3196 ($[M + Na]^+$)). The presence of an α,β -unsaturated lactone ring and an OH group was suggested by the IR absorption bands at 1731 and 3218 cm⁻¹. The ¹H-NMR spectrum (*Table 1*) showed signals for one Me *doublet* at $\delta(H)$ 0.83 and five Me *singlets* $\delta(H)$ 1.01, 1.04, 1.68, 1.92, and 2.03. The ¹³C-NMR (DEPT) data of **3** (*Table 2*) indicated 32 C-atoms and 45 C-bonded H-atoms. The ¹³C-NMR spectrum showed three carboxylic C-atoms at $\delta(C)$ 178.4, 169.7, and 166.4, four olefinic resonances at $\delta(C)$ 148.8, 139.2, 128.4, and 112.0, and two oxygenated C-atoms at $\delta(C)$ 80.3 and 75.3, respectively. The high-field region showed six Me, nine CH₂, and four CH groups, together with four quaternary C-atoms. These

data suggested that 3 was a triterpene lactone, the two additional carbons being assigned to an AcO substituent.

Compounds **1**–**3** all possess the same side-chain moiety, as indicated by similar ¹Hand ¹³C-NMR data. The common EI-MS fragment at m/z 111 agrees with this conclusion. From the ¹H- and ¹³C-NMR spectra of **3**, it became clear that a COO group $(\delta(C) 178.4)$ and an isopropenyl group $[\delta(H) 4.81 (s, 1 H), 4.76 (s, 1 H), 1.63 (s, 3 H)]$ were present, as confirmed by the corresponding ¹³C-NMR signals at $\delta(C)$ 112.0 and 148.8. Thus, it was concluded that cleavage of ring *A* had furnished a carboxylic acid at one terminus and an isopropenyl group at the other [12]. In the ¹H-NMR spectrum, two mutually coupled *doublets* at $\delta(H) 0.69$ and 0.60 (J = 4.7 Hz) indicated the presence of a cyclopropane ring, whose position was revealed by the HMBC correlations (*Fig. 3*) of both $\delta(H) 0.69$ and 0.60 (J = 4.7 Hz) with $\delta(C) 48.8 (C(8)), 45.9 (C(5)), 36.0 (C(11)),$ 28.6 (C(1)), 26.5 (C(9)), and 20.6 (C(10)).

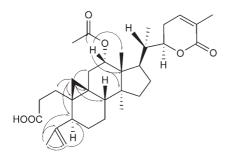


Fig. 3. Key HMBC correlations of 3

Based on the above spectroscopic data, compound **3** had the same skeleton as schisanlactone E [10]. The ¹H-NMR signal at δ (H) 2.03 (*s*, 3 H), along with the corresponding ¹³C-NMR signals at δ (C) 169.7 and 21.5, suggested the presence of an AcO group located in 12-position, based on HMBC correlations of δ (H) 4.84 with δ (C) 169.7 (C(31)), 48.6 (C(13)), 48.5 (C(14)), and 16.8 (Me(18)), in accord with a *doublet* at δ (H) 4.84 (J = 6.7 Hz) due to an oxygenated H-atom at C(12).

Compound **3** showed a positive *Cotton* effect at 257 nm, similar to that of schisanlactone E, indicating the absolute (*R*)-configuration at C(22) [11]. The correlations between Me(18)/H-C(20), Me(18)/Me(29), Me(30)/H-C(17), Me(28)/H-C(5), H-C(12)/Me(18), and H-C(12)/Me(21) in the ROESY spectrum indicated that the configurations at C(12) and C(20) were the same as those in **1** and **2**. Thus, the structure of **3** was assigned as '(12*S*,22*R*)-12-acetoxy-3-hydroxy-3-oxo-9,19-cyclo-3,4-secolanosta-4(28),24-dien-26,22-lactone'.

Compound 4 was identified as schisanlactone E (=(22R)-3-hydroxy-3-oxo-9,19-cyclo-3,4-secolanosta-4(28),24-dien-26,22-lactone) by comparison of its spectroscopic data with those reported previously [12].

This work was supported by grants from the National Natural Science Foundation of China (No. 30271586), the Foundation for the Doctoral Programs (No. 2000026519), the Trans-Century Training Program Foundation for the Talents, and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions (No. 1999-71) from the Ministry of Education, P. R. China. The authors are grateful to Minqin Chen, Fudan University, for solving the X-ray crystal structure of **1**.

Experimental Part

General. Petroleum ether (PE) for chromatography was of b.p. $60-90^{\circ}$. Anal. TLC: silica gel F_{254} plates (0.15 mm; Yantai). Column chromatography (CC): silica gel (200-300 or 300-400 mesh; Qingdao). M.p.: XT-4 micro-melting-point apparatus (*Tai-KE Instrument Co.*, Beijing); uncorrected. Optical rotations: Jasco P-1020 spectropolarimeter. UV Spectra: 756 MC spectrometer; in anh. MeOH; λ_{max} (log ε) in nm. CD Spectra: Jasco J-715 spectropolarimeter; λ in nm ($\Delta \varepsilon$ in mdeg). IR Spectra: Thermo-Nicolet Avatar 360-ESP spectrophotometer, as KBr pellets; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker DRX-400 apparatus, in CDCl₃ soln.; δ in ppm rel. to Me₄Si, J in Hz. EI-MS: Hewlett-Packard 5989A mass spectrometer. HR-ESI-MS: Micromass Q-Tof mass spectrometer; in m/z.

Plant Material. Stems of *Kadsura polysperma* were collected in Chongqing, P. R. China, in November 1992, and identified by *D. C.* A voucher specimen (Chen-NC921101) was deposited at the Herbarium of Materia Medica, Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, P. R. China.

Extraction and Isolation. The stems (3.3 kg) of *K. polysperma* were air-dried, ground, and extracted exhaustively with 95% EtOH at r.t. The alcoholic extract was evaporated *in vacuo* to yield a semisolid (166 g), which was suspended in H₂O (500 ml) and extracted with Et₂O (7×). The etheral soln. was concentrated to yield 28 g of a residue, which was purified by CC (500 g SiO₂; PE/AcOEt gradient) to afford several fractions (Fr.). *Fr. 5* was subjected to repeated CC (SiO₂; CHCl₃/MeOH 20:1) to yield 4 (1.10 g). *Fr.* 7 was subjected to repeated CC (SiO₂; PE/CHCl₃/acetone 4:4:1→4:4:2) to afford 1 (29 mg), **2** (5 mg), and **3** (92 mg).

Polysperlactone A (= (3R,3aR,4S,11aR,13bS)-1,2,3,3a,4,5,9,11,11a,13b-Decahydro-3a,11,11,13b-tetramethyl-3-{(1S)-1-[(2S)-3,6-dihydro-5-methyl-6-oxo-2H-pyran-2-yl]ethyl]-9-oxoindeno[5',4': 4,5]cyclohepta[1,2-c]oxepin-4-yl Acetate; **2**). Colorless needles (PE/AcOEt). M.p. 290–294°. [a]₂^A = -77.0 (c = 0.07, acetone). UV (MeOH): 209 (3.56), 327 (3.14). CD (c = 0.06, MeOH):248 (-12). IR (KBr): 2966, 2868, 2243, 1689, 1596, 1429, 1377, 1362, 1290, 1267, 1197, 1126, 1029, 973, 724, 644, 589, 526. ¹H- and ¹³C-NMR: see *Tables I* and 2, resp. EI-MS: 462 (13), 402 (100), 361 (13), 305 (10), 261 (15), 247 (13), 209 (23), 192 (11), 111 (11), 83 (18), 55 (25), 44 (60). HR-ESI-MS: 521.2899 ([M + H]⁺, C₃₂H₄₁O₆⁺; calc. 521.2903).

Polysperlactone B (= 3-[(1R,3aS,3bS,6S,6aR,7aR,9S,9aR)-9-Acetoxydecahydro-3a,9a-dimethyl-6-(1-methylethenyl)-1-{(1S)-1-[(2R)-3,6-dihydro-5-methyl-6-oxo-2H-pyran-2-yl]ethyl]-1H-cyclopenta[a]-cyclopropa[e]naphthalen-6a(7H)-yl]propanoic Acid; **3**). Colorless granules (PE/AcOEt). M.p. 148–150°. [α]₂₆²⁴ = 82.9 (c = 0.09, acetone). UV (MeOH): 208 (3.45). CD (c = 0.07, MeOH): 257 (+4). IR (KBr): 3218, 2949, 1731, 1457, 1391, 1377, 1358, 1274, 1246, 1163, 1142, 1121, 1031, 987. ¹H- and ¹³C-NMR: see *Tables I* and 2, resp. EI-MS: 453 (4), 367 (5), 327 (8), 311 (5), 267 (4), 211 (6), 187 (6), 159 (11), 133 (15), 111 (21), 83 (25), 55 (35), 44 (100). HR-ESI-MS: 549.3196 ([M + Na]⁺, C₃₂H₄₆NaO⁺₆; calc. 549.3192).

Crystal Structure of Heteroclitalactone $D(1)^2$). Diffraction data for **1** were collected on an Enraf-Nonius CAD4 diffractometer, using MoK_a radiation ($\lambda = 0.71073$ Å) and the $\omega - 2\theta$ scan mode. The structure was solved with SHELXTL-97, and refined by means of full-matrix least-squares on F^2 . Crystals of **1** ($0.30 \times 0.20 \times 0.15$ mm) were orthorhombic (space group $P 2_{12}$, with cell dimensions a =11.9190(14), b = 33.080(6), c = 7.4390(14) Å, $a = \beta = \gamma = 90.00^{\circ}$, V = 2933.1(9) A³; Z = 4, $D_c =$ 1.184 Mg/m³, F(000) = 1182, T = 293(2) K.

²) The crystallographic data of 1 have been deposited with the *Cambridge Crystallographic Data Centre* as supplementary publication number CCDC-273570. Copies of the data can be obtained, free of charge, at http://www.ccdc.cam.ac.uk/data_request/cif.

REFERENCES

- 'Pharmacopoeia of the People's Republic of China', Chemical Industry Press, Beijing, 2005, Vol. 1, p. 324.
- [2] D. F. Chen, S. X. Zhang, H. K. Wang, S. Y. Zhang, Q. Z. Sun, L. M. Cosentino, K. H. Lee, J. Nat. Prod. 1999, 62, 94.
- [3] D. F. Chen, G. J. Xu, X. W. Yang, M. Hattroi, Y. Tezuka, T. Kikuchi, T. Namba, *Phytochemistry* 1992, 31, 629.
- [4] D. F. Chen, S. X. Zhang, K. Chen, B. N. Zhou, P. Wang, L. M. Cosentino, K. H. Lee, J. Nat. Prod. 1996, 59, 1066.
- [5] D. F. Chen, S. X. Zhang, L. Xie, J. X. Xie, K. Chen, Y. Kashiwada, B. N. Zhou, P. Wang, L. M. Cosentino, K. H. Lee, *Bioorg. Med. Chem.* 1997, 5, 1715.
- [6] D. F. Chen, S. X. Zhang, M. Kozuka, Q. Z. Sun, J. Feng, Q. Wang, T. Mukainaka, Y. Nobukuni, H. Tokuda, H. Nishino, H. K. Wang, S. L. Morris-Natschke, K. H. Lee, J. Nat. Prod. 2002, 65, 1242.
- [7] D. F. Chen, H. L. Peng, M. H. Jiang, D. W. Shi, J. Shanghai Med. Univ. 1996, 23 suppl., 52.
- [8] Y. P. Chen, Z. W. Lin, H. J. Zhang, H. D. Sun, Phytochemistry 1990, 29, 3358.
- [9] W. Wang, J. Z. Liu, J. Han, Z. R. Xu, R. X. Liu, P. Liu, W. X. Wang, X. C. Ma, S. H. Guan, D. Guo, Planta Med. 2006, 72, 450
- [10] Y. G. Chen, G. W. Qin, Y. Y. Xie, Chin. J. Chem. 2001, 19, 304.
- [11] J. S. Liu, M. F. Huang, Acta Chim. Sin. 1984, 42, 464.
- [12] J. S. Liu, M. F. Huang, Acta Chim. Sin. 1991, 49, 502.

Received February 23, 2007